\qquad
Class :
NGSS Chemistry
Period: Period 1
Assignment: Assignment Week 4
Due:
Friday, 5/15

Stoichiometry (mole to mole ratios and simple one step problems)

General Instructions:

Please do the activities for each day as indicated. You will work the problems on separate sheets of paper as necessary that you will attach to the completed packet that you submit. Be sure your name is on all sheets of paper. Follow your individual teachers' instructions for turning in work

Submitted Work:

1) Reading notes from section 12.1 \& 12.2
2) Completed practice problems and section assignments below

Questions:

1) Please send email as you have questions and/or attend virtual office hours.

Date	Activity
Monday (5/4)	Read Section 12.1 Take reading notes. Be able to work through all sample problems.
Tuesday (5/5)	Read Section 12.2 Take reading notes. Be able to work through all sample problems.
Wednesday (5/6)	Practice Problems 11 \& 12 (page 360 of text) show all of your work
Thursday (5/7)	Practice Problems 13 \& 14 (page 361 of text) show all of your work
Friday (5/8)	Practice Problems $15 \& 16$ (page 364 of text) show all of your work

Answers to problems problems can be found in "appendix E" at the back of your book

Examples and set ups (how to show your work)

Mole ratios from a balanced equation

Given the following equation: $\mathbf{2 C}_{\mathbf{4}} \mathbf{H}_{\mathbf{1 0}}+\mathbf{1 3 O}_{\mathbf{2}} \rightarrow \mathbf{8} \mathrm{CO}_{\mathbf{2}}+\mathbf{1 0} \mathbf{H}_{\mathbf{2}} \mathrm{O}$, show what the following molar ratios should be.
a. $\mathrm{C}_{4} \mathrm{H}_{10}$ and O_{2}
b. $\mathrm{C}_{4} \mathrm{H}_{10}$ and CO_{2}
c. $\mathrm{C}_{4} \mathrm{H}_{10}$ and $\mathrm{H}_{2} \mathrm{O}$
d. O_{2} and CO_{2}
e. O_{2} and $\mathrm{H}_{2} \mathrm{O}$
f. CO_{2} and $\mathrm{H}_{2} \mathrm{O}$

Given the following BALANCED equation: $\underline{2 K C l O}_{3} \rightarrow \mathbf{2 K C l}+\underline{30}_{2}$
How many moles of O_{2} can be produced by letting 12.00 moles of KClO_{3} react?
Inventory

$$
\begin{aligned}
& \text { asked }=? \mathrm{~mol} \mathrm{O}_{2} \\
& \text { given }=12.00 \mathrm{~mol} \mathrm{kClO}
\end{aligned}
$$

Conversion factors

Grams to grams conversion from a balanced equation (will require 2 steps and molar masses)
Given the following equation: $\mathbf{2 K}+\mathbf{C l}_{\mathbf{2}} \rightarrow \mathbf{2 K C l}$
How many grams of KCl is produced from 2.50 g of K and excess Cl_{2}.
Inventory

$$
\begin{aligned}
& \text { asked }=? \mathrm{gkCl} \\
& \text { given }=2.50 \mathrm{gk}
\end{aligned}
$$

Conversion factors

$$
\text { cove }=\frac{12 \mathrm{molk}}{12 \mathrm{molkl}} \frac{39.10 \mathrm{gk}}{1 \mathrm{molk}}
$$

