\qquad
Class :
Enhanced NGSS Chemistry
Period: Period 6
Assignment: Assignment Week 5
Due:
NA

Stoichiometry (limiting reactants, Theoretical yeild and percent yield)

General Instructions:
Please do the activities for each day as indicated. You will work the problems on separate sheets of paper as necessary that you will attach to the completed packet that you submit. Be sure your name is on all sheets of paper. Follow your individual teachers' instructions for turning in work

Submitted Work:

1) Reading notes from section 9.3
2) Completed practice problems and section assignments for each day given below

Questions:

1) Please send email as you have questions and/or attend virtual office hours.

Date	Activity
Monday (5/18)	Read Section 9.3 Take reading notes. Be able to work through all sample problems.
Tuesday $(5 / 19)$	Practice Problem $1 \mathrm{a}, \mathrm{b}, \mathrm{c}$ (page 313 of text) show all of your work
Wednesday (5/20)	Practice Problems $1 \& 2$ (page 315 of text) show all of your work
Thursday (5/21)	Practice Problems $1 \& 2$ (page 318 of text) show all of your work
Friday (5/22)	Section Review Problems $2 \& 3$ (page 318 of text) show all of your work

Teacher eddition of book to check your answers:
http://rdibler.net/Chemistry/Distance\ Learning/Modern\ Chem\ Ch\ 9\ Teacher.pdf
Examples and set ups (how to show your work)
Limiting reactants, Theoretical yeilds, Percent yeilds

1. Balance the following equations.

- Given 10.0 grams of each reactant:
port $A \rightarrow \checkmark$ Which of the reactants is the limiting reactant?
port ${ }^{B}{ }_{\checkmark}$ Theoretically How many grams of each product could be produced?

$\begin{aligned} \text { Port } B \rightarrow & \text { now that I know } \mathrm{H}_{2} \mathrm{SO}_{4} \text { is } m y \text { Limiting recctont, I will use it } \\ & \text { to find out How many of of product con be mode ono oh ya... I }\end{aligned}$ did $\mathrm{H}_{2} \mathrm{O}$ already, 50 onl g hove to find $\mathrm{Li}_{2} \mathrm{SO}_{4}$

Inventory
asked $=? \mathrm{~g} \mathrm{~L}_{12} \mathrm{SO}_{4}$
given $=10 . \mathrm{Og} \mathrm{H}_{2} \mathrm{SO}_{4}$

conversion factors

$\frac{98.09 \mathrm{GH}_{2} \mathrm{SO}_{4}}{1 \mathrm{mOl} \mathrm{H}_{2} \mathrm{SO}_{4}} \quad \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol} \mathrm{~L}_{2} \mathrm{SO}_{4}} \quad \frac{109.95 \mathrm{~g} \mathrm{Li}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{SO}_{4}}$

Port $A: \mathrm{H}_{2} \mathrm{SO}_{4}$ is Limiting Recctort (I will Run out of it first) Port B: with $10.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ I will be able to moke 3.67 g H H O and $11.2 \mathrm{~g} \mathrm{Li2} \mathrm{SO}_{4}$

So... How much LiOH will I have left over (in excess)? I pick one of my products...see how much LiOH is needed to make that amount and subtract that amount from my starting mass of $\mathrm{LiOH}(10.0 \mathrm{~g})$

$$
\begin{aligned}
& \text { Inventory } \\
& \text { asked } ? \mathrm{~g} \mathrm{giOH} \\
& \text { given }=3.67 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$$
\frac{\text { Conversion factors }}{\frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \quad \frac{23.95 \mathrm{~L} \text { LiOlt }}{1 \mathrm{~mol} \mathrm{L.OH}} \quad \frac{1 \text { mol LiOlt }}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}}
$$

$$
\begin{aligned}
& \quad 10.0 \mathrm{~g} \mathrm{LiOH} \text { Toto l } \\
& \left.-\quad 4.88 \mathrm{~g} \mathrm{LiOH} \text { needed (Irun out of } \mathrm{H}_{2} \mathrm{SO}_{4}\right) \\
& -\quad\left[\begin{array}{l}
5.12 \mathrm{~g} \text { LiOH Left Over }(\text { in excess }) \\
\hline
\end{array}\right.
\end{aligned}
$$

So... Lets say I did the experment and I actually made $10.8 \mathrm{~g} \mathrm{Li} \mathrm{i}_{2} \mathrm{SO}_{4}$. What was my percent yeld?

So... Lets say that this was the last problem set for 2020 Enhanced Chemistry...Ya!!

$$
\begin{aligned}
& \text { percent yeld }=\frac{\text { actual yeld }}{\text { Theoretical yeld }} \times 100 \\
& \% \text { reid }=\frac{10.8 g L_{2} 504}{11.2 g L_{2} 504} \times 100=96.4 \% \text { yeld }
\end{aligned}
$$

